
Readme February 2005

Page 1 of 5 Copyright ©2002-2005 PeerSec Networks, Inc.

MatrixSSL Readme

Description
MatrixSSL is an embedded, open source SSL implementation designed for small
footprint applications and devices. It is designed to reduce the complexity of integrating
SSL into an embedded project. With a simple API and security layer, users are able to
easily integrate MatrixSSL with their applications. MatrixSSL uses industry standard
cryptographic algorithms and protocols to ensure users are getting a strong and reliable
security solution in an open-source package that is under 50K compiled.

MatrixSSL was designed to allow users to easily add support for new operating systems,
crypto providers, and cipher suites. The package comes with built in support for
Windows and Linux and cipher suites defined in the PeerSec embedded cryptography
implementation.

Commercial Version
Some features described in this document are available only in the commercially licensed
version of MatrixSSL. Sections of this document that refer to the commercial version
will be noted.

Overview
A functional SSL implementation consists of two primary components: A handshake
protocol between a client and server to securely negotiate a communication session over
which secure messages will be transported, and a set of cryptographic algorithms used to
secure the messages sent and received over that negotiated session.

MatrixSSL's handshake protocol supports the client and server side SSLv3.

The commercial version supports the TLS standard as well. These standard protocols are
compatible with any client software that supports SSL such as Web browsers, Web
servers and email clients.

MatrixSSL supports the SSL_RSA_WITH_RC4_128_MD5,
SSL_RSA_WITH_RC4_128_SHA and SSL_RSA_WITH_3DES_EDE_CBC_SHA
cipher suites.
The commercial version also supports the TLS_RSA_WITH_AES_128_CBC_SHA and
TLS_RSA_WITH_AES_256_CBC_SHA cipher suites.
RSA is used as the public key encryption mechanism for authentication and key
exchange. RSA keys are stored on disk in the PEM format. 3DES encrypted private
RSA key files are supported as well. Message authentication codes are either MD5 or
SHA1. 3DES and arc4 are used for encryption and decryption of messages.
The commercial version adds AES support for encryption and decryption.

PeerSec Networks has included an implementation of these cryptographic algorithms as
part of the MatrixSSL distribution. MatrixSSL has been designed to allow users to easily

Readme February 2005

Page 2 of 5 Copyright ©2002-2005 PeerSec Networks, Inc.

add or replace cipher suites, add or replace individual cryptographic algorithms, and
allows easy integration of any crypto provider.

Installing
The MatrixSSL package does not include an installation program or script. Simply
extract the supplied directory structure from the distribution media to a local file system.

Building MatrixSSL
This section explains how to build the MatrixSSL shared library and example
httpsReflector server application. For development information on application
integration, porting, implementing new cipher suites, and other compile-time
configurations see the MatrixSSL Developers Guide.

Quick Start for Windows
These steps will enable a user to build the MatrixSSL library and an example server
application very quickly. These steps assume a Windows box that has been configured
with Visual Studio .NET.

1. Copy the MatrixSSL distribution package to a dedicated directory.
2. Open the httpsReflector.sln solution file located in the examples directory. This

solution contains two projects: matrixssl, the project that builds the MatrixSSL
library and httpsReflector, which builds an example application that uses
MatrixSSL.

3. Make sure the httpsReflector project is the default project by right clicking the
project name and selecting ‘Set As StartUp Project’ .

4. Make sure the httpsReflector project has a dependency on the matrixssl project by
right clicking the solution name and selecting ‘Project Dependencies’ and
confirming the build order.

5. Build the solution through the 'Build' menu. You can specify Release or Debug
targets through the Visual Studio configuration manager.

6. You can now run the httpsReflector.exe through the debugger or by double
clicking the executable file. The httpsReflector application is a simple server
application that accepts an HTTPS connection and echoes the data back to the
client.

7. Open a web browser and connect to the server at https://localhost:4433/
8. Depending on the browser and security configuration options, a security dialog

box should appear asking if you would like to proceed to the secure site. The
sample certificates that are used will likely cause the dialog box to indicate the
certificate is issued from a certificate authority you have not chosen to trust and
that the IP address of the certificate does not match. This is normal for test
certificates. Choosing to continue on to the page should produce a browser page
similar to the following.

PeerSec Networks
Successful MatrixSSL request:

Readme February 2005

Page 3 of 5 Copyright ©2002-2005 PeerSec Networks, Inc.

GET / HTTP/1.1
Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg,
application/vnd.ms-excel, application/vnd.ms-powerpoint,
application/msword, application/x-shockwave-flash, */*
Accept-Language: en-us
Accept-Encoding: gzip, deflate
User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1;
.NET CLR 1.0.3705; .NET CLR 1.1.4322)
Host: localhost:4433
Connection: Keep-Alive

9. The httpsClient solution may be built in a similar manner and executed from
inside the debugger or standalone. The output from running the httpsClient
against the httpsReflector should produce results similar to the following:

 CC
 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
 100 connections in 1 seconds (100.000000 c/s)

 100 requests in 1 seconds (100.000000 r/s)
 Press return to exit...

Quick Start for Linux
These steps will enable a user to create the MatrixSSL library and example server
application very quickly. These steps assume a Linux box that has been configured with
standard development tools (gcc compiler and make).

1. Copy the MatrixSSL distribution package to a dedicated directory.
2. Type ‘make’ from the src directory to build the MatrixSSL library.
3. Type ‘make’ from the examples directory to build the example server.
4. Run the example server application by typing ‘ ./httpsReflector’ . The

httpsReflector application is a simple server application that accepts an HTTPS
connection and echoes the data back to the client.

5. Open a web browser and connect to the server at https://localhost:4433
6. Depending on the browser and security configuration options, a security dialog

box should appear asking if you would like to proceed to the secure site. The
sample certificates that are used will likely cause the dialog box to indicate the
certificate is issued from a certificate authority you have not chosen to trust and
that the IP address of the certificate does not match. This is normal for test
certificates. Choosing to continue on to the page should produce a browser page
similar to the following.

PeerSec Networks
Successful MatrixSSL request:
GET / HTTP/1.1
Host: localhost:4433
User-Agent: Mozilla/5.0 (X11; U; Linux i686; en-US; rv:1.5a)
Gecko/20030728 Mozilla Firebird/0.6.1
Accept: text/xml, application/xhtml+xml,
text/html;q=0.9,text/plain;q=0.8,video/x-
mng,image/png,image/jpeg,image/gif;q=0.2,*/*;q=0.1

Readme February 2005

Page 4 of 5 Copyright ©2002-2005 PeerSec Networks, Inc.

Accept-Language: en-us,en;q=0.5
Accept-Encoding: gzip, deflate
Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7
Keep-Alive: 300
Connection: Keep-Alive

7. The httpsClient solution may be built in a similar manner and executed from the
command line. The output from running the httpsClient against the httpsReflector
should produce results similar to the following:

 CC
 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
 100 connections in 1 seconds (100.000000 c/s)

 100 requests in 1 seconds (100.000000 r/s)
 Press return to exit...

MatrixSSL Directory structure
The top level directories in the full MatrixSSL distribution are src, doc, and examples. In
addition, the public header for the library is located at the top level (matrixSsl.h).

The src directory (with the addition of the public header file) contains all the of the
source code necessary to build the MatrixSSL library. The C code and header files at the
top level of src are the core files of the product and should always be included when
compiling.

The os and crypto subdirectories contain the ‘pluggable’ portions of MatrixSSL that may
vary depending on the specific operating system and crypto provider being used. The
provided default crypto provider in the crypto directory is peersec (the company that
wrote MatrixSSL). Normally the built-in PeerSec crypto provider is sufficient, but if you
need specific hardware implementations please contact PeerSec Networks for an easy to
use OpenSSL crypto wrapper.

The supported operating systems supplied by default in the os directory are Windows and
Linux (win and linux). Additional OS ports can be added at this level.

The examples directory contains reference applications that use the MatrixSSL library.
The httpsReflector example is a server that simply echoes a HTTPS request back to a
client such as a Web browser. The httpsClient example implements client side HTTPS
functionality and can interact securely with httpsReflector or another secure server such
as Apache with OpenSSL.

The doc directory contains all the documentation for the MatrixSSL product.

Readme February 2005

Page 5 of 5 Copyright ©2002-2005 PeerSec Networks, Inc.

1.2.4 Release Notes
• There was no public 1.2.3 release
• Functional changes from 1.2.2 release

o Client will reply with NULL cert message if client authentication is
requested.

• No API changes from 1.2.2 release
• Bug fixes and enhancements

o Changed all instances of int types to int32 to be more explicit and to allow
easy global redefinitions for porting

o Corrected the maximum message size limit to match the SSL specification
o Developers may notice some internal routines using a psPool_t parameter.

These parameters allow deterministic memory support in the commercial
version of MatrixSSL. They are unused in the GNU version of
MatrixSSL.

o Cert parse can handle duplicate distinguished name entries.
o ASN.1 parse fix for AlgorithmIdentifier missing the trailing NULL
o Checking certificate version before doing checking the ‘ca’ member of the

basic constraint entry during certificate validation.
• For a full list of release notes and issues, see http://www.matrixssl.org

