
Developer's Guide February 2005

Page 1 of 16 Copyright ©2002-2005 PeerSec Networks, Inc.

MatrixSSL Developer’s Guide
This document discusses developing with MatrixSSL. It includes instructions on
integrating MatrixSSL into an application and a description of the configurable options
for modifying the MatrixSSL library itself.

Commercial Version
Some functions or features described in this document are available only in the
commercially licensed version of MatrixSSL. Sections of this document that refer to the
commercial version will be noted and shaded.

Integrating with applications
MatrixSSL is a library that provides a security layer to client and server applications
allowing them to securely communicate with other SSL enabled entities. MatrixSSL is
transport agnostic and can just as easily integrate with an HTTP server as it could with a
device communicating through a serial port. For simplicity, this developer’s guide will
assume a socket based implementation for all its examples unless otherwise noted.

The term application in this document refers to the client or server application the
MatrixSSL library is being integrated with.

This document will walk through the specific points in which MatrixSSL should be
integrated with an application. MatrixSSL APIs should be integrated into the application
during initialization/cleanup, when new secure connections are being setup (handshaking)
and when encrypting/decrypting messages exchanged with peers.

Refer to the MatrixSSL API document to get familiar with the interface to the library and
with the example code to see how they are used at implementation. Follow the
guidelines below when using these APIs to integrate MatrixSSL into an application.

1. Initialization

MatrixSSL should be initialized as part of the application initialization with a call to
matrixSslOpen. This function takes no parameters and sets up the internal structures
needed by the library.

In most cases the application will also call matrixSslReadKeys during its initialization.
This function takes the file names of the certificate, private key, and Certificate
Authority files used for authentication and public key encryption. The call extracts the
RSA material and returns an sslKeys_t structure to the application that will be used in
a subsequent call to matrixSslNewSession. matrixSslReadKeys parses through an entire
PEM certificate file so it is a rather CPU intensive task. This needs to be taken into
consideration to determine the most logical place for your application to read in its
keys. It can be called a single time at start up to keep the keys in memory for the life of
the application. This is the most common example and should be used in this manner if
the application uses the same certificate file for each connection. Alternatively, it can

Developer's Guide February 2005

Page 2 of 16 Copyright ©2002-2005 PeerSec Networks, Inc.

be called once for each secure connection and freed immediately after the connection is
closed. This should be done if the application has multiple certificate files depending
on the identity of the connecting entity or if there is a security concern with keeping the
RSA keys in memory for extended periods of time. This API can also be used to read a
set of keys for each virtual server, and reused for sessions within that virtual server in
Apache like environments.

Once the application is done with the keys they are freed with a call to
matrixSslFreeKeys.

2. Creating a Session
The next MatrixSSL integration point in the application is to identify when a new
session is starting. In the case of a client, this is whenever it chooses to begin one since
only client initiated sessions are supported in MatrixSSL. In the case of a server, a new
session should be started when the server accepts a connection from a client. In a
socket based application, this would typically happen when the accept socket call
returns. The application sets up a new session with the API matrixSslNewSession. The
returned ssl_t value will become the input parameter for most of the remaining APIs
that act at a session level.

The required input parameters to matrixSslNewSession are the key structure from the
previous call to matrixSslReadKeys and the flag SSL_FLAGS_SERVER or 0 (for a
client session).

In the commercial version of MatrixSSL the server may also choose to include the flag
SSL_FLAGS_CLIENT_AUTH if client authentication is required. The MatrixSSL
library must have be compiled with USE_CLIENT_AUTH defined in order to use this
flag.

For client cases, there is an optional sessonId parameter that identifies a previously
open session to resume a session. A session id can be retrieved from a call to
matrixSslGetSessionId once a session has been negotiated and before it is deleted. The
session id parameter must always be NULL for server implementations.

A final consideration at this point of integration is whether or not to register a
certificate validation callback function with the matrixSslSetCertValidator API. This
routine takes the SSL session and a function pointer as arguments. The registered
function will be invoked during the portion of the handshake process in which the
certificate is being verified. This API should be used when the MatrixSSL default
certificate validation is not deemed sufficient or if the application would like to expose
the certificate information to the user for any reason.

In the commercial version this callback registration only makes sense on the server side
if client authentication is being used as the application will be receiving the client
certificate as part of the handshake.

Developer's Guide February 2005

Page 3 of 16 Copyright ©2002-2005 PeerSec Networks, Inc.

3. Handshaking
With the session now established, a client initiates a handshake by first constructing the
CLIENT_HELLO message with a call to matrixSslEncodeClientHello. The client
sends the constructed data to the server. When the server receives notice that a client is
requesting a secure communication session and the function matrixSslNewSession has
been called to create a new session structure the application can then read in the client
message data. All incoming messages should be passed to matrixSslDecode which then
processes the message and drives the handshake through the built-in SSLv3 state
machine. The parameters to matrixSslDecode include the SSL structure returned from
the call to matrixSslNewSession, input and output buffers, and alert and error output
parameters. Refer to the API documentation for more details.

The matrixSslDecode API is a powerful function that processes handshake messages
for clients and servers as well as decoding application data. Its return code tells the
application what the message was and how it is to be handled.

The steps below outline the proper usage of matrixSslDecode on the server side when
handshaking. A sockets based implementation is assumed in these steps.

1. The applications reads the client data off the socket with recv
2. matrixSslDecode is called with the client data
3. The return value from matrixSslDecode is tested to see what action the

application is required to do with the output buffer. The list of possible return
values and appropriate action include:

a. SSL_SEND_RESPONSE - This value indicates the message was part
of the SSLv3 standard and a reply is expected. The application should
send the output buffer to the client with send and then call
matrixSslDecode again to see if any more message data needs to be
decoded.

b. SSL_ERROR – This value indicates there has been an error while
attempting to decode the data or that a bad message was sent. The
application should attempt to send the out buffer to the client as a reply
and then close the socket.

c. SSL_ALERT – This value indicates the message was an alert sent
from the client and the application should close the socket.

d. SSL_PARTIAL – This value indicates that the input buffer was an
incomplete message or record (or no data at all to parse). If the
handshake is incomplete (!matrixSslHandshakeIsComplete()), the
application must retrieve more data from the socket with recv and call
matrixSslDecode with then entire record. If the handshake is
complete, the caller can decide whether more data is expected at this
point or not.

e. SSL_FULL – This value indicates the output buffer was too small to
hold the output message. The application should grow the output
buffer and call matrixSslDecode again with the same input buffer. The

Developer's Guide February 2005

Page 4 of 16 Copyright ©2002-2005 PeerSec Networks, Inc.

maximum size of the buffer output buffer will never exceed 16K per
the SSLv3 standard.

f. SSL_PROCESS_DATA – This value indicates that the message is
application specific data that does not require a response from the
server. This message is an implicit indication that SSLv3 handshaking
is complete. The decoded data has been written to the output buffer
for application consumption.

g. SSL_SUCCESS - A handshake message was successfully decoded and
handled. No additional action is required for this message.
matrixSslDecode can be called again immediately if more data is
expected. This return code gives visibility into the handshake process
and can be used in conjunction with matrixSslHandshakeIsComplete to
determine when the handshake is complete and application data can be
sent.

 The client steps are identical to the server steps above except the process is
 started with a call to matrixSslNewSession and matrixSslEncodeClientHello to
 construct the first message to be sent to the server.

4. Communicating With Peers

Once the handshake is complete the application will simply wrap all incoming and
outgoing messages with matrixSslDecode and matrixSslEncode, respectively.

5. Ending a session
When the application receives notice that the session is complete or has determined
itself that the session is complete, it should notify the other side, close the socket and
delete the MatrixSSL session. This is done by calling matrixSslEncodeClosureAlert
and matrixSslDeleteSession.

A call to matrixSslEncodeClosureAlert is an optional step that will encode an alert
message to pass along to the other side to inform them to close the session cleanly.

On a graceful closure, a client application may wish to store aside the session id
information before ending a session, to allow fast resumption of the next session to the
same SSL server. It can do this with a call to matrixSslGetSessionId before calling
matrixSslDeleteSession. Future negotiations with the same server can be quickly
resumed by passing that session id to matrixSslNewSession.

6. Closing the library
At application exit the MatrixSSL library should be un-initialized with a call to
matrixSslClose. If the application has called matrixSslReadKeys as part of the
initialization process and kept its keys in memory it should call matrixSslFreeKeys
before calling matrixSslClose. Additionally, if the client application has called
matrixSslGetSessionId to support session resumption, it should call
matrixSslFreeSessionId before calling matrixSslClose.

Developer's Guide February 2005

Page 5 of 16 Copyright ©2002-2005 PeerSec Networks, Inc.

Working implementations of MatrixSSL integration can be seen in the examples
subdirectory of the distribution package. A server source code example is available in
the httpsReflector example application. A client source code example is available in the
httpsClient example application.

Re-handshaking
The three types of SSL handshake message protocols supported by MatrixSSL are shown
below for reference.
Note that the client authentication handshake is only available in the commercial version.

ClientHello

ServerHello

ClientKeyExchange

ChangeCipherSpec

Finished

Client Server

Certificate

ServerHelloDone

ChangeCipherSpec

Finished

FULL HANDSHAKE

ClientHello

ServerHello

ChangeCipherSpec

Finished

Client Server

ChangeCipherSpec

Finished

RESUMED HANDSHAKE

Developer's Guide February 2005

Page 6 of 16 Copyright ©2002-2005 PeerSec Networks, Inc.

A re-handshake is a handshake over an already existing SSL connection. As with the
initial handshake, a re-handshake may take the form of any of the three supported
handshake protocols shown above. The three most common reasons for initiating re-
handshakes are:

1. Re-key the symmetric cryptographic material
Re-keying the symmetric keys adds an extra level of security for applications that
require the connection be open for long periods of time or transferring large
amounts of data. Periodic changes to the keys can discourage hackers who are
mounting timing attacks on a connection.

ClientHello

ServerHello

ClientKeyExchange

ChangeCipherSpec

Finished

Client Server

Certificate

ServerHelloDone

ChangeCipherSpec

Finished

CLIENT AUTHENTICATION
HANDSHAKE

CertificateRequest

Certificate

CertificateVerify

Developer's Guide February 2005

Page 7 of 16 Copyright ©2002-2005 PeerSec Networks, Inc.

Either side may initiate the re-handshake for this purpose. If a server wishes to
initiate a re-handshake for this purpose it can send a HELLO_REQUEST message
to the client. The HELLO_REQUEST message is constructed by calling
matrixSslEncodeHelloRequest. If a client wishes to initiate a re-handshake for
this purpose it can simply send a new CLIENT_HELLO to the server. The
CLIENT_HELLO message is constructed by calling matrixSslEncodeClientHello.
Regardless of who initiates, if a “ full” re-handshake is desired the application
should call matrixSslSetSessionOption with SSL_OPTION_DELETE_SESSION
to force a new session id to be negotiated. Often, the faster “resumed” handshake
is sufficient as new client and server random numbers will be exchanged for a
new symmetric key block. To perform a “resumed” handshake, simply exclude
the call to matrixSslSetSessionOption before sending the HELLO_REQUEST or
CLIENT_HELLO handshake message.

2. Perform a client authentication handshake
A scenario may arise in which the server requires that the data being exchanged is
only allowed for a client whose certificate has been authenticated, but the original
negotiation took place without client authentication. In order to do a client
authenticated re-handshake the server must call matrixSslSetSessionOption with
SSL_OPTION_ENABLE_CLIENT_AUTH before encoding and sending the
HELLO_REQUEST message.

Enabling client authentication is a persistent attribute on the session. For this
reason, the implementation must remember to call matrixSslSetSessionOption
with SSL_OPTION_DISABLE_CLIENT_AUTH if future re-handshakes on the
connection do not require client authentication.

Note that client authentication features are only available in the commercial
version of MatrixSSL. The non-commercial client library will gracefully handle a
request for client authentication, but will send a 0 length certificate to indicate it a
client certificate is not available.

3. Change cipher spec

The cipher suite may be changed on a connected session using a re-handshake if
needed. The client must call matrixSslSetSessionOption with
SSL_OPTION_DELETE_SESSION and then construct a CLIENT_HELLO
message to be sent. Simply modify the cipherSpec parameter in the call to
matrixSslEncodeClientHello to the desired cipher.

Porting to Other Platforms

OS Dependent Code Layer
The code under matrixssl/src/os may need to be modified when porting to new platforms.

Developer's Guide February 2005

Page 8 of 16 Copyright ©2002-2005 PeerSec Networks, Inc.

Build Environment Details
The supplied build environments allow the creation of a MatrixSSL shared object (DLL
on Windows) library for each supported operating system. Details for Windows, Linux,
VxWorks, and MacOS X builds are provided in this section. Use these examples as a
guide for building on other platforms and make systems.

Windows Builds
The MatrixSSL package is distributed with Visual Studio .NET project files for use with
Windows systems. If you are working with an earlier version of Visual Studio, the
information in this section should be sufficient to create a MatrixSSL project.

Compiler and linker settings
Use the default compiler and linker settings for Debug and Release targets

Additional Debug defines
WIN32; _WIN32_WINNT=0x0500; _DEBUG; DEBUG

Additional Release defines
WIN32; _WIN32_WINNT=0x0500

Run-time library
Multi-threaded DLL (use Debug version for debug builds)

Linux Builds
The MatrixSSL package is distributed with Makefile files for building on Linux systems.
These Makefiles can be used as templates for make systems on other platforms. The
makefiles determine whether or not to build debug by checking whether the
MATRIXSSL_DEBUG environment variable is set.

Debug defines
-DLINUX -DDEBUG

Release defines
-DLINUX

Debug compile options
-g

Release compile options
-O3

Link options
-nostdlib –lc –lpthread (pthread only required if USE_MULTITHREADING set)

Developer's Guide February 2005

Page 9 of 16 Copyright ©2002-2005 PeerSec Networks, Inc.

MacOS X Builds
MacOS X uses the same Makefiles as Linux. OS dependencies are detected by a call to
uname within the Makefile. The source code is organized so that the (Posix compatible)
Linux specific code is used by OS X. Because there are also specifics to OS X, both
LINUX and OSX must be defined for the compiler.
MacOS X uses a "unique" (to put it nicely) method of runtime DLL discovery. The path
to the DLL is actually embedded within the DLL itself, and set in the executable when it
is linked against the DLL. Most other UNIX based environments allow you to directly
embed library search paths in the executable directly (-L or LD_LIBRARY_PATH). On
OS X, you must specify the path from the executable to the DLL in the –install_name
parameter when linking the DLL (not the EXE). Alternately, you can install the library
in one of the default OS X paths such as /Library to allow proper runtime loading from
executables.

Debug defines
-DLINUX –DDEBUG -DOSX

Release defines
-DLINUX -DOSX

Debug compile options
-g –Wall

Release compile options
-O3

Link options
-flat_namespace –install_name @executable_path/../src/libmatrixssl.dylib

VxWorks Builds
Tornado projects and Makefiles are not included in the download package because are
very specific to the BSP and version of Tornado. Contact PeerSec Networks for more
information on building for VxWorks.

Debug defines
-DVXWORKS –DDEBUG

Release defines
-DVXWORKS

Link options
You must find the udivdi3 symbol in the VxWorks distribution and manually link
to it if you get an unresolved external. Typically linking with libgcc.a under the
Tornado host directory will resolve this symbol. If this file is not present, you
must disable USE_INT64 in matrixConfig.h, which turns off the requirement for
64 bit integer math, but reduces performance significantly.

Developer's Guide February 2005

Page 10 of 16 Copyright ©2002-2005 PeerSec Networks, Inc.

Windows CE / PocketPC Builds
Windows CE project files are not included. The structure is similar to the standard
Windows project. Because they share common code, both WIN32 and WINCE must be
defined. Please contact PeerSec Networks if you are using the CE platform and require
additional information.

Debug defines
-DWIN32 –DWINCE -DDEBUG

Release defines
-DWIN32 –DWINCE

Debug compile options
TBD

Release compile options
TBD

Link options
TBD

Extending MatrixSSL
This section of the developers guide explains more of the internals of MatrixSSL and
how to extend its functionality.

Compile-Time Defines
A lot of the functionality of MatrixSSL has been encapsulated with compile-time
definitions in the matrixConfig.h header file. Reducing the number of supported features
is an effective way of reducing the compiled library size. Descriptions for these options
can be found in the following list:

USE_SERVER_SIDE_SSL
On by default, this define enables server specific code to be compiled into the library.
There is a small subset of public APIs that are only available to client side
implementations. It is generally not advisable to disable server or client support in
the MatrixSSL library unless the few Kb of savings is important to the project.

USE_CLIENT_SIDE_SSL
On by default, this define enables client specific code to be compiled into the library.
There is a small subset of public APIs that are only available to client side
implementations. It is generally not advisable to disable server or client support in
the MatrixSSL library unless the few Kb of savings is important to the project.

USE_TLS (Commercial version only)
On by default, this define enables the TLS protocol to be compiled into the library.

Developer's Guide February 2005

Page 11 of 16 Copyright ©2002-2005 PeerSec Networks, Inc.

USE_TLS_RSA_WITH_AES_128_CBC_SHA (Commercial version only)
On by default, this define controls the inclusion of the cipher suite consisting of RSA
public key encryption, 128 bit AES symmetric encryption, and SHA1 message
authentication codes. This cipher suite is only available if USE_TLS has been
defined.

USE_TLS_RSA_WITH_AES_256_CBC_SHA (Commercial version only)
On by default, this define controls the inclusion of the cipher suite consisting of RSA
public key encryption, 256 bit AES symmetric encryption, and SHA1 message
authentication codes. This cipher suite is only available if USE_TLS has been
defined.

USE_SSL_RSA_WITH_RC4_128_MD5
On by default, this define controls the inclusion of the cipher suite consisting of RSA
public key encryption, 128 bit ARC4 symmetric encryption, and MD5 message
authentication codes. This is the weakest cipher suite supported, and is marginally
faster than the others.

USE_SSL_RSA_WITH_RC4_128_SHA
On by default, this define controls the inclusion of the cipher suite consisting of RSA
public key encryption, 128 bit ARC4 symmetric encryption, and SHA1 message
authentication codes. This ciphersuite is a good balance of speed and security for
embedded devices.

USE_SSL_RSA_WITH_3DES_EDE_CBC_SHA
Off by default, this define controls the inclusion of the cipher suite consisting of RSA
public key encryption, 128 bit 3DES symmetric encryption, and SHA1 message
authentication codes. This is the strongest cipher suite in terms of security, but also
the most CPU intensive.

USE_ENCRYPTED_PRIVATE_KEYS
On by default, this define controls whether or not to support the reading of 3DES
encrypted (password protected) private key files passed to matrixSslReadKeys.
Embedded MatrixSSL installations usually will not have an operator available to
enter a password, so private keys are stored unencrypted on the device, and this
option can be disabled to slightly reduce code size.

USE_MULTITHREADING
On by default, this define controls whether or not to use multithread mutex support in
the operating system layer. This option can be enabled whether or not the library is
used in a multithreaded application. It does not mean that MatrixSSL will generate
any threads, it only provides additional concurrency control for environments that
may have multiple SSL sessions in use simultaneously. This can be disabled in
environments with no threading APIs defined in the MatrixSSL OS layer. This

Developer's Guide February 2005

Page 12 of 16 Copyright ©2002-2005 PeerSec Networks, Inc.

feature only provides concurrency protection for the session cache, which is shared
between SSL sessions. The sessions themselves are not protected from concurrent
access. If multiple threads are using a single ssl_t structure (not recommended), they
must handle the concurrency themselves.

USE_PEERSEC_MALLOC (Commercial version only)
Off by default, this define controls whether or not to use the PeerSec deterministic
memory feature. Please see the document MatrixSSL Deterministic Memory for
further information.

USE_FILE_SYSTEM
On by default, this define controls whether or not to include public API functions that
make use of operating system calls that access files. The matrixSslReadKeys API is
currently the only library function to use such system calls. A buffer only version of
this API (matrixSslReadKeysMem) is included in the library.

USE_CLIENT_AUTH (Commercial version only)
Off by default, this defines controls whether or not to include library support for
client certificate authentication. If turned on, a server may pass
SSL_FLAGS_CLIENT_AUTH to the flags parameter of matrixSslNewSession to
request the two-way authentication.

USE_INT64
On by default, this define controls whether or not to use native 64-bit integer
arithmetic. If the platform being compiled for does not support 64-bit types (long
long), undefined this for 32-bit arithmetic support. 32 bit only support is more
compatible, but nearly twice as slow as native 64 bit math. You should only disable
this option if your build gives an error about 64 bit integers (often a linker error
related to udivdi3.o that can be resolved by linking to an additional object). This is
primarily for compatibility with 16 bit platforms, and should be avoided for most 32
bit platforms.

MP_16BIT
Disabling USE_INT64 will enable this define automatically to generate RSA code
that is 16 bit compatible. This option should not be set directly, please contact
PeerSec Networks if you have questions on compiling for a 16 bit platform.

USE_RSA_BLINDING
Off by default, this define controls whether or not to enable RSA blinding. RSA
blinding randomizes private key decryption arithmetic to guard against remote timing
attacks. This option slows initial RSA handshaking by 8-10%

Developer's Guide February 2005

Page 13 of 16 Copyright ©2002-2005 PeerSec Networks, Inc.

Cipher Suites
MatrixSSL uses the term cipher suite to describe a collection of function callbacks and
key size specifications used to determine which algorithms are used for symmetric and
public key encryption/decryption and how MAC generation and verifications are handled
for a session. The following section explains how each element of a cipher suite is
implemented.

1. Defining a cipher suite
The list of available default cipher suites are found in the supportedCiphers static
structure in the file cipherSuite.c. This structure defines all available cipher suites
along with a required NULL suite as the last entry. The definition of the
sslCipherSpec_t structure is as follows:

typedef struct {
 unsigned int id; // unique identifier
 unsigned char macSize; // MAC digest size (bytes)
 unsigned char keySize; // symmetric key length (bytes)
 unsigned char ivSize; // symmetric block cipher iv size
 unsigned char blockSize; // symmetric block cipher size
 // set to 1 for stream cipher
 //Init function
 int (*init)(sslSec_t *sec);
 //Cipher functions
 int (*encrypt)(sslCipherContext_t *ctx, char *in,
 char *out, int len); // symmetric encryption
 int (*decrypt)(sslCipherContext_t *ctx, char *in,
 char *out, int len); // symmetric decryption
 int (*encryptPub)(sslRsaKey_t *key, char *in, int inlen,
 char *out, int outlen); // public key encryption
 int (*decryptPriv)(sslRsaKey_t *key, char *in, int inlen,
 char *out, int outlen); // private key decryption
 int (*generateMac)(sslSec_t *sec, unsigned char type,
 char *data, int len, char *mac);
 int (*verifyMac)(sslSec_t *sec, unsigned char type,
 char *data, int len, char *mac);
} sslCipherSpec_t;

A cipher suite entry should be defined in the supportedCiphers structure between
a custom define that has been added to the matrixConfig.h file. Any number of
cipher suites can be compiled into the library. The SSL handshake protocol will
negotiate the proper cipher at connection time. For reference, see the built-in
supported cipher suites in the configuration header file:

 USE_SSL_RSA_WITH_RC4_128_MD5
 USE_SSL_RSA_WITH_RC4_128_SHA
 USE_SSL_RSA_WITH_3DES_EDE_CBC_SHA

 USE_TLS_RSA_WITH_AES_128_CBC_SHA
 USE_TLS_RSA_WITH_AES_256_CBC_SHA

Developer's Guide February 2005

Page 14 of 16 Copyright ©2002-2005 PeerSec Networks, Inc.

2. Symmetric Encryption
The symmetric encryption and decryption functions are identified in the encrypt
and decrypt members of the sslCipherSpec_t structure. To add support for a new
symmetric cipher context, locate the sslCipherContext_t structure definition in the
header file of the chosen crypto provider and add the cipher context necessary to
support the new method. For reference, see the PeerSec implementation in the
header file pscrypto.h.

In addition to the callbacks, the values for keySize, ivSize, and blockSize all relate
to symmetric encryption and should be set appropriately. The keySize member is
the desired strength of the symmetric key in bytes. The ivSize is an optional
length of an initialization vector if the chosen cipher requires one. The blockSize
member should be specified if a block cipher is being used. If a stream cipher is
used, set this value to 1.

3. Public Key Encryption
Public key encryption and decryption functions are identified in the encryptPub
and decryptPriv members of the sslCipherSpec_t structure. In general, these
callbacks are the least configurable members of a cipher suite. RSA is the
standard in public key encryption and is assumed in the current MatrixSSL
encryption layers. The value for encryptPub must be matrixRsaEncryptPub and
the value for decryptPriv must be matrixRsaDecryptPriv. The implementation of
these two functions will be implemented by a crypto provider.

4. MAC Generation and Verification
The message authentication code cipher is selected through the generateMac and
verifyMac members of the sslCipherSpec_t structure. The MAC implementation
is used during the handshake portion of negotiating a secure connection and is
part of the SSLv3 specification. For this reason, it should not be necessary to
replace the existing MatrixSSL MAC ciphers. For MD5 MACs, choose
md5GenerateMac and md5VerifyMac, respectively. For SHA1 MACs, choose
sha1GenerateMac and sha1VerifyMac.

Crypto Providers
MatrixSSL uses the term crypto provider to refer to the specific implementation of a
cryptographic algorithm. In general, a crypto provider will implement an entire cipher
suite, but it is possible that several crypto providers can contribute to a cipher suite. This
allows the most appropriate version of a specific algorithm to be implemented for your
application. The default crypto provider can be found in the MatrixSSL source code
distribution in the src/crypto subdirectory. The set of functions a crypto provider must
implement for the supplied cipher suites are prototyped in cryptoLayer.h. The following
list provides details for each:

ARC4
matrixArc4Init(sslCipherContext_t *ctx, unsigned char *key, int keylen);

 matrixArc4(sslCipherContext_t *ctx, char * in, char *out, int len);

Developer's Guide February 2005

Page 15 of 16 Copyright ©2002-2005 PeerSec Networks, Inc.

3DES

 matrix3desInit(sslCipherContext_t *ctx, const unsigned char * IV,
 const unsigned char *key, int keylen);
 matrix3desEncrypt(sslCipherContext_t *ctx, char * in, char *out, int len);
 matrix3desDecrypt(sslCipherContext_t *ctx, char * in, char *out, int len);

 AES (Commercial version only)
 matrixAesInit(sslCipherContext_t *ctx, char * IV, char *key, int keylen);
 matrixAesEncrypt(sslCipherContext_t *ctx, char *pt, char *ct, int len);
 matrixAesDecrypt(sslCipherContext_t *ctx, char *ct, char *pt, int len);

MD5
 matrixMd5Init(sslMd5Context_t *ctx);
 matrixMd5Update(sslMd5Context_t *ctx, const unsigned char *buf,
 unsigned long len);
 matrixMd5Final(sslMd5Context_t *ctx, unsigned char *hash);

SHA1
 matrixSha1Init(sslSha1Context_t *ctx);
 matrixSha1Update(sslSha1Context_t *ctx, const unsigned char *buf,
 unsigned long len);
 matrixSha1Final(sslSha1Context_t *ctx, unsigned char *hash);

RSA
 matrixRsaReadCert(char * fileName, unsigned char **out, int *outLen);
 matrixRsaReadPrivKey(char * fileName, char *password, sslRsaKey_t **key);
 matrixRsaFreeKey(sslRsaKey_t *key);
 matrixRsaEncryptPub(sslRsaKey_t *key, char * in, int ilen, char *out, int outlen);
 matrixRsaDecryptPriv(sslRsaKey_t *key, char * in, int ilen, char *out, int outlen);

 X509 certificates
 matrixX509ParseCert(unsigned char **certBuf, int certlen, sslRsaCert_t **cert);
 matrixX509FreeCert(sslRsaCert_t *cert);
 matrixX509ValidateCert(sslRsaCert_t *subjectCert, sslRsaCert_t * issuerCert);
 matrixX509UserValidator(sslRsaCert_t *subjectCert,
 int (*certValidator)(sslCertInfo_t *t));

Debugging
MatrixSSL provides the following debug functionality in matrixConfig.h:

sslAssert(C);

sslAssert is a macro defined in matrixConfig.h that allows a developer to test if a
certain condition is true. In debug builds this will output a message containing the

Developer's Guide February 2005

Page 16 of 16 Copyright ©2002-2005 PeerSec Networks, Inc.

condition tested, the file name, and line number to stderr then calls sslBreak to stop
the process. In release builds this simply outputs the message to stderr without
breaking the process.

void sslBreak();
sslBreak allows a developer to stop the process and break into a debugger when an
assert triggers. It is called by sslAssert in DEBUG builds.

void matrixStrDebugMsg(char *message, char *arg);

matrixStrDebugMsg is defined in matrixSsl.c and allows a developer to output a
debug message to stdout with a single string argument (may be NULL). In release
builds this function is compiled out.

void matrixIntDebugMsg(char *message, int arg);

matrixIntDebugMsg is defined in matrixSsl.c and allows a developer to output a
debug message to stdout with a single integer argument. In release builds this
function is compiled out.

